Neuro-choice

Extracting Neural Activity Signals from Large-scale Calcium Imaging Data

Started
January 1, 2019
Status
In Progress
Share this post

Abstract

People

Scientists

SDSC Team:

description

Problem:

The partners in the project use high throughput optical fluorescence microscopy and calcium imaging to record and track the activity of large, genetically identified neuronal cell populations in freely moving mice over long periods of time (several months). By analyzing these large-scale high-resolution images, our goals are to:

  • develop a fully automated image classification algorithm that extracts all neuron outlines, positions and activities
  • scale and parallelize classifier training to achieve the best performance
  • benchmark the new classifier against human labeling

Solution:

Most state-of-the-art methods for extracting neuronal activity from calcium imaging data are semi-automated or require full supervision from a human expert, making it very difficult to scale to large datasets.

Our solution (so far) relies on (convolutional) dictionary learning models. Dictionary learning and sparse representation make a sparsity assumption instead of independence or uncorrelation (like PCA or ICA), which is more aligned with the sparseness of neuronal activity property.

We propose a structured dictionary learning model that introduces sparse activations of neurons, temporally continuous activations and spatial smoothness in the masks modelling the neurons illumination patterns. The algorithm uses block proximal gradient methods for learning the dictionary elements and activation matrix.

Gallery

Raw Data
Preprocessed Data

Annexe

Additionnal resources

Bibliography

Publications

Related Pages

More projects

ML4FCC

In Progress
Machine Learning for the Future Circular Collider Design
Big Science Data

CLIMIS4AVAL

In Progress
Real-time cleansing of snow and weather data for operational avalanche forecasting
Energy, Climate & Environment

SEMIRAMIS

Completed
AI-augmented architectural design
Energy, Climate & Environment

4D-Brains

In Progress
Extracting activity from large 4D whole-brain image datasets
Biomedical Data Science

News

Latest news

Climate-smart agriculture in sub-Saharan Africa: optimizing nitrogen fertilization with data science
November 6, 2023

Climate-smart agriculture in sub-Saharan Africa: optimizing nitrogen fertilization with data science

Climate-smart agriculture in sub-Saharan Africa: optimizing nitrogen fertilization with data science

Food insecurity in sub-Saharan Africa is widespread, with crop yields much lower than in many developed regions. The project aims to use laser spectroscopy to measure fluxes and isotopic composition of N2O from maize and potato crops subjected to a range of fertilization levels.
Street2Vec | Self-supervised learning unveils change in urban housing from street-level images
October 31, 2023

Street2Vec | Self-supervised learning unveils change in urban housing from street-level images

Street2Vec | Self-supervised learning unveils change in urban housing from street-level images

It is difficult to effectively monitor and track progress in urban housing. We attempt to overcome these limitations by utilizing self-supervised learning with over 15 million street-level images taken between 2008 and 2021 to measure change in London.
DLBIRHOUI | Deep Learning Based Image Reconstruction for Hybrid Optoacoustic and Ultrasound Imaging
February 28, 2023

DLBIRHOUI | Deep Learning Based Image Reconstruction for Hybrid Optoacoustic and Ultrasound Imaging

DLBIRHOUI | Deep Learning Based Image Reconstruction for Hybrid Optoacoustic and Ultrasound Imaging

Optoacoustic imaging is a new, real-time feedback and non-invasive imaging tool with increasing application in clinical and pre-clinical settings. The DLBIRHOUI project tackles some of the major challenges in optoacoustic imaging to facilitate faster adoption of this technology for clinical use.

Contact us

Let’s talk Data Science

Do you need our services or expertise?
Contact us for your next Data Science project!