Neuro-choice

Extracting Neural Activity Signals from Large-scale Calcium Imaging Data

Started
January 1, 2019
Status
Completed
Share this project

Abstract

People

Collaborators

SDSC Team:
Benjamin Béjar Haro
Guillaume Obozinski
Izabela Moise

description

Problem:

The partners in the project use high throughput optical fluorescence microscopy and calcium imaging to record and track the activity of large, genetically identified neuronal cell populations in freely moving mice over long periods of time (several months). By analyzing these large-scale high-resolution images, our goals are to:

  • develop a fully automated image classification algorithm that extracts all neuron outlines, positions and activities
  • scale and parallelize classifier training to achieve the best performance
  • benchmark the new classifier against human labeling

Solution:

Most state-of-the-art methods for extracting neuronal activity from calcium imaging data are semi-automated or require full supervision from a human expert, making it very difficult to scale to large datasets.

Our solution (so far) relies on (convolutional) dictionary learning models. Dictionary learning and sparse representation make a sparsity assumption instead of independence or uncorrelation (like PCA or ICA), which is more aligned with the sparseness of neuronal activity property.

We propose a structured dictionary learning model that introduces sparse activations of neurons, temporally continuous activations and spatial smoothness in the masks modelling the neurons illumination patterns. The algorithm uses block proximal gradient methods for learning the dictionary elements and activation matrix.

Gallery

Raw Data
Preprocessed Data

Annexe

Additional resources

Bibliography

Publications

Related Pages

More projects

ML-L3DNDT

Completed
Robust and scalable Machine Learning algorithms for Laue 3-Dimensional Neutron Diffraction Tomography
Big Science Data

BioDetect

Completed
Deep Learning for Biodiversity Detection and Classification
Energy, Climate & Environment

IRMA

In Progress
Interpretable and Robust Machine Learning for Mobility Analysis
No items found.

FLBI

In Progress
Feature Learning for Bayesian Inference
No items found.

News

Latest news

Smartair | An active learning algorithm for real-time acquisition and regression of flow field data
May 1, 2024

Smartair | An active learning algorithm for real-time acquisition and regression of flow field data

Smartair | An active learning algorithm for real-time acquisition and regression of flow field data

We’ve developed a smart solution for wind tunnel testing that learns as it works, providing accurate results faster. It provides an accurate mean flow field and turbulence field reconstruction while shortening the sampling time.
The Promise of AI in Pharmaceutical Manufacturing
April 22, 2024

The Promise of AI in Pharmaceutical Manufacturing

The Promise of AI in Pharmaceutical Manufacturing

Innovation in pharmaceutical manufacturing raises key questions: How will AI change our operations? What does this mean for the skills of our workforce? How will it reshape our collaborative efforts? And crucially, how can we fully leverage these changes?
Efficient and scalable graph generation through iterative local expansion
March 20, 2024

Efficient and scalable graph generation through iterative local expansion

Efficient and scalable graph generation through iterative local expansion

Have you ever considered the complexity of generating large-scale, intricate graphs akin to those that represent the vast relational structures of our world? Our research introduces a pioneering approach to graph generation that tackles the scalability and complexity of creating such expansive, real-world graphs.

Contact us

Let’s talk Data Science

Do you need our services or expertise?
Contact us for your next Data Science project!