Neuro-choice

Extracting Neural Activity Signals from Large-scale Calcium Imaging Data

Started
January 1, 2019
Status
In Progress
Share this project

Abstract

People

Collaborators

SDSC Team:
Benjamin Béjar Haro
Guillaume Obozinski
Izabela Moise

description

Problem:

The partners in the project use high throughput optical fluorescence microscopy and calcium imaging to record and track the activity of large, genetically identified neuronal cell populations in freely moving mice over long periods of time (several months). By analyzing these large-scale high-resolution images, our goals are to:

  • develop a fully automated image classification algorithm that extracts all neuron outlines, positions and activities
  • scale and parallelize classifier training to achieve the best performance
  • benchmark the new classifier against human labeling

Solution:

Most state-of-the-art methods for extracting neuronal activity from calcium imaging data are semi-automated or require full supervision from a human expert, making it very difficult to scale to large datasets.

Our solution (so far) relies on (convolutional) dictionary learning models. Dictionary learning and sparse representation make a sparsity assumption instead of independence or uncorrelation (like PCA or ICA), which is more aligned with the sparseness of neuronal activity property.

We propose a structured dictionary learning model that introduces sparse activations of neurons, temporally continuous activations and spatial smoothness in the masks modelling the neurons illumination patterns. The algorithm uses block proximal gradient methods for learning the dictionary elements and activation matrix.

Gallery

Raw Data
Preprocessed Data

Annexe

Additionnal resources

Bibliography

Publications

Related Pages

More projects

ML4FCC

In Progress
Machine Learning for the Future Circular Collider Design
Big Science Data

CLIMIS4AVAL

In Progress
Real-time cleansing of snow and weather data for operational avalanche forecasting
Energy, Climate & Environment

SEMIRAMIS

Completed
AI-augmented architectural design
Energy, Climate & Environment

4D-Brains

In Progress
Extracting activity from large 4D whole-brain image datasets
Biomedical Data Science

News

Latest news

PassGPT | Using language models to enhance password security
February 6, 2024

PassGPT | Using language models to enhance password security

PassGPT | Using language models to enhance password security

PassGPT is a Large Language Model for password generation trained on leaked passwords, which can outperform existing methods based on generative adversarial networks by guessing twice as many unseen passwords.
ADORE | A benchmark dataset in ecotoxicology to foster the adoption of machine learning
January 24, 2024

ADORE | A benchmark dataset in ecotoxicology to foster the adoption of machine learning

ADORE | A benchmark dataset in ecotoxicology to foster the adoption of machine learning

Applying machine learning to ecotoxicology could help reduce the number of animal tests, costs, and animals sacrificed while preserving the accuracy of the in vivo tests.
License Flowers | Art and AI at SDSC
February 21, 2024

License Flowers | Art and AI at SDSC

License Flowers | Art and AI at SDSC

An adventure to create art using AI to raise awareness on code licenses

Contact us

Let’s talk Data Science

Do you need our services or expertise?
Contact us for your next Data Science project!