
PACMAN HIPA
Particle Accelerators and Machine Learning

Abstract
The High Intensity Proton Accelerator (HIPA) at Paul Scherrer Institute (PSI) provides the primary beams to PSI’s versatile experimental facilities which in turn provide high intensity beams for research. In an accelerator control room several hundred of continuous sensor data are displayed in order to aid the operators in running the accelerator with maximal performance. We propose to bring Machine Learning (ML) to particle accelerator operation, in order to increase the performance. A more accurate parameter control based on the surrogate modelling will contribute to reliable and safe operation, and increase the accelerator efficiency. The immediate benefits will be: reducing the risks related to the high beam power by reducing the activation and beam losses, an action that will in turn, lead to fewer machine interruptions and possibly higher beam intensities. The project is likely to have a game-changing impact in howwe model and operate charged particle accelerators in the near future.
Presentation
People
Scientists


Fernando received a PhD. in Electrical Engineering from the Technical University of Madrid. He has been a member of the technical staff at Bell Labs and a Machine Learning Research Scientist at Amazon. Fernando has been a visiting professor at Princeton University under a Marie Curie Fellowship and an associate professor at University Carlos III in Madrid. He held positions at the Gatsby Unit (London), Max Planck Institute for Biological Cybernetics (Tuebingen), and BioWulf Technologies (New York). Since 2022, Fernando is the Deputy Executive Director of the SDSC.
Laboratory for Scientific Computing and Modelling:
- Dr. Andreas Adelmann
- Dr. Jaime Coello de Portugal
- Sichen Li
description
Goals:
- Minimise beam losses: To be able to predict the reaction of a knob, especially those at the first sections of the accelerator, a reliable machine model needs to be available.
- Better control of accelerator parameters: we will establish a fast on-line enhancement of the machine protection system with beam diagnostics data. The accelerator parameters will be predicted from the beam diagnostics data. Appropriate changes to the machine / beamline settings will be proposed as operational enhancements by the surrogate model.
- Prevent unnecessary machine interruptions: A surrogate model that captures fast responses from the machine can be used in the forecasting of machine interruptions. Here we would expand from research goal 1 and use results from the fusion community [10] (and the references therein).

Gallery
Annexe
Additionnal resources
Bibliography
Publications
Related Pages
More projects
CLIMIS4AVAL
News
Latest news


Climate-smart agriculture in sub-Saharan Africa: optimizing nitrogen fertilization with data science
Climate-smart agriculture in sub-Saharan Africa: optimizing nitrogen fertilization with data science


Street2Vec | Self-supervised learning unveils change in urban housing from street-level images
Street2Vec | Self-supervised learning unveils change in urban housing from street-level images


DLBIRHOUI | Deep Learning Based Image Reconstruction for Hybrid Optoacoustic and Ultrasound Imaging
DLBIRHOUI | Deep Learning Based Image Reconstruction for Hybrid Optoacoustic and Ultrasound Imaging
Contact us
Let’s talk Data Science
Do you need our services or expertise?
Contact us for your next Data Science project!