PACMAN HIPA

Particle Accelerators and Machine Learning

Started
January 2, 2019
Status
In Progress
Share this post

Abstract

The High Intensity Proton Accelerator (HIPA) at Paul Scherrer Institute (PSI) provides the primary beams to PSI’s versatile experimental facilities which in turn provide high intensity beams for research. In an accelerator control room several hundred of continuous sensor data are displayed in order to aid the operators in running the accelerator with maximal performance. We propose to bring Machine Learning (ML) to particle accelerator operation, in order to increase the performance. A more accurate parameter control based on the surrogate modelling will contribute to reliable and safe operation, and increase the accelerator efficiency. The immediate benefits will be: reducing the risks related to the high beam power by reducing the activation and beam losses, an action that will in turn, lead to fewer machine interruptions and possibly higher beam intensities. The project is likely to have a game-changing impact in howwe model and operate charged particle accelerators in the near future.

People

Scientists

SDSC Team:
PI | Partners

Laboratory for Scientific Computing and Modelling:

  • Dr. Andreas  Adelmann
  • Dr. Jaime Coello de Portugal
  • Sichen Li

More info

Learning & Adaptive Systems Group:

  • Prof. Andreas Krause
  • Johannes Kirschner
  • Mojmir Mutny

More info

description

Goals:

  1. Minimise beam losses: To be able to predict the reaction of a knob, especially those at the first sections of the accelerator, a reliable machine model needs to be available.
  2. Better control of accelerator parameters: we will establish a fast on-line enhancement of the machine protection system with beam diagnostics data. The accelerator parameters will be predicted from the beam diagnostics data. Appropriate changes to the machine / beamline settings will be proposed as operational enhancements by the surrogate model.
  3. Prevent unnecessary machine interruptions: A surrogate model that captures fast responses from the machine can be used in the forecasting of machine interruptions. Here we would expand from research goal 1 and use results from the fusion community [10] (and the references therein).
Source: PSI

Gallery

Annexe

Additionnal resources

Bibliography

Publications

Related Pages

More projects

ML4FCC

In Progress
Machine Learning for the Future Circular Collider Design
Big Science Data

CLIMIS4AVAL

In Progress
Real-time cleansing of snow and weather data for operational avalanche forecasting
Energy, Climate & Environment

SEMIRAMIS

Completed
AI-augmented architectural design
Energy, Climate & Environment

4D-Brains

In Progress
Extracting activity from large 4D whole-brain image datasets
Biomedical Data Science

News

Latest news

Climate-smart agriculture in sub-Saharan Africa: optimizing nitrogen fertilization with data science
November 6, 2023

Climate-smart agriculture in sub-Saharan Africa: optimizing nitrogen fertilization with data science

Climate-smart agriculture in sub-Saharan Africa: optimizing nitrogen fertilization with data science

Food insecurity in sub-Saharan Africa is widespread, with crop yields much lower than in many developed regions. The project aims to use laser spectroscopy to measure fluxes and isotopic composition of N2O from maize and potato crops subjected to a range of fertilization levels.
Street2Vec | Self-supervised learning unveils change in urban housing from street-level images
October 31, 2023

Street2Vec | Self-supervised learning unveils change in urban housing from street-level images

Street2Vec | Self-supervised learning unveils change in urban housing from street-level images

It is difficult to effectively monitor and track progress in urban housing. We attempt to overcome these limitations by utilizing self-supervised learning with over 15 million street-level images taken between 2008 and 2021 to measure change in London.
DLBIRHOUI | Deep Learning Based Image Reconstruction for Hybrid Optoacoustic and Ultrasound Imaging
February 28, 2023

DLBIRHOUI | Deep Learning Based Image Reconstruction for Hybrid Optoacoustic and Ultrasound Imaging

DLBIRHOUI | Deep Learning Based Image Reconstruction for Hybrid Optoacoustic and Ultrasound Imaging

Optoacoustic imaging is a new, real-time feedback and non-invasive imaging tool with increasing application in clinical and pre-clinical settings. The DLBIRHOUI project tackles some of the major challenges in optoacoustic imaging to facilitate faster adoption of this technology for clinical use.

Contact us

Let’s talk Data Science

Do you need our services or expertise?
Contact us for your next Data Science project!