MLATEM

Machine Learning tools for Analytical Transmission Electron Microscopy

Started
January 1, 2021
Status
In Progress
Share this post

Abstract

Modern transmission electron microscopes are equipped with aberration correctors and high-resolution spectrometers, which enable the spatially-resolved chemical analysis of an unlimited variety of materials on the nanometric or even atomic  length scales. The ultimate ambition of a researcher is to segment and accurately quantify the analytical data recorded from such the sample, in order to precisely characterize the spatial distribution and nature of each of its phases. However, currently, such an aim can only be realized in a limited fraction of cases, owing to factors including signal convolutions and non-linear backgrounds, detector and signal noise characteristics, and segmentation challenges from the projection effects.

The aim of this project is to address and resolve these deficits, by innovating a radically new approach to the data analysis.

The aim of our project is to develop an integrated approach where all of these elements are synergistically coupled together: prior information; a directed “dictionary learning” approach using the optimal data science tools; and physical model-based quantification. With interactive feedback between these elements, it will be possible to achieve a step change in the quality of data analysis. A successful project will therefore significantly increase the ability of the researcher to leverage their data for obtaining new scientific insights and technological advances across a wide range of fields.

People

Scientists

SDSC Team:
PI | Partners

description

Problem:

The spectroscopic data obtain in scanning transmission electron microscopes (STEM) are in most cases not straightforward to analyse because of noise and mixed features (both spectrally and spatially). The current state-of-the-art in this community in terms of data analysis is limited to basic ML algorithms such as PCA or NMF which, in general, do not retrieve the original physical features of the observed sample. In the MLATEM project we aim at designing a physics-guided ML algorithm which will retrieve the physically-correct features of the observed sample. In that perspective, the SDSC will provide an expertise on cutting-edge ML techniques to develop this algorithm while the collaborating team will provide domain knowledge.

Goal:

Our goal is to develop a new standard algorithm for the electromicroscopy community.

Gallery

Annexe

Additionnal resources

Bibliography

  1. D.D. Lee, H.S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature. 401 (1999) 788.
  2. Trebbia, P., Bonnet, N., 1990. Ultramicroscopy 34, 165–178 & Bonnet, N., Brun, N., Colliex, C., 1999.
  3. K.J. Dudeck, M. Couillard, S. Lazar, C. Dwyer, G.A. Botton, Quantitative statistical analysis, optimization and noise reduction of atomic resolved electron energy loss spectrum images, Micron. 43 (2012) 57–67.
  4. A.B. Yankovich, C. Zhang, A. Oh, T.J.A. Slater, F. Azough, R. Freer, S.J. Haigh,
  5. R. Willett, P.M. Voyles, Non-rigid registration and non-local principle component analysis to improve electron microscopy spectrum images, Nanotechnology. 27 (2016) 364001.
  6. B.H. Martineau, D.N. Johnstone, A.T.J. van Helvoort, P.A. Midgley, A.S. Eggeman, Unsupervised machine learning applied to scanning precession electron diffraction data, Adv. Struct. Chem. Imaging. 5 (2019) 3.
  7. M. Shiga, K. Tatsumi, S. Muto, K. Tsuda, Y. Yamamoto, T. Mori, T. Tanji, Sparse modeling of EELS and EDX spectral imaging data by nonnegative matrix factorization, Ultramicroscopy. 170 (2016) 43–59.
  8. Verbeeck, J. and S. Van Aert (2004), 'Model based quantification of EELS spectra', Ultramicroscopy, 101 (2-4), 207-224.

Publications

Related Pages

More projects

ML4FCC

In Progress
Machine Learning for the Future Circular Collider Design
Big Science Data

CLIMIS4AVAL

In Progress
Real-time cleansing of snow and weather data for operational avalanche forecasting
Energy, Climate & Environment

SEMIRAMIS

Completed
AI-augmented architectural design
Energy, Climate & Environment

4D-Brains

In Progress
Extracting activity from large 4D whole-brain image datasets
Biomedical Data Science

News

Latest news

Climate-smart agriculture in sub-Saharan Africa: optimizing nitrogen fertilization with data science
November 6, 2023

Climate-smart agriculture in sub-Saharan Africa: optimizing nitrogen fertilization with data science

Climate-smart agriculture in sub-Saharan Africa: optimizing nitrogen fertilization with data science

Food insecurity in sub-Saharan Africa is widespread, with crop yields much lower than in many developed regions. The project aims to use laser spectroscopy to measure fluxes and isotopic composition of N2O from maize and potato crops subjected to a range of fertilization levels.
Street2Vec | Self-supervised learning unveils change in urban housing from street-level images
October 31, 2023

Street2Vec | Self-supervised learning unveils change in urban housing from street-level images

Street2Vec | Self-supervised learning unveils change in urban housing from street-level images

It is difficult to effectively monitor and track progress in urban housing. We attempt to overcome these limitations by utilizing self-supervised learning with over 15 million street-level images taken between 2008 and 2021 to measure change in London.
DLBIRHOUI | Deep Learning Based Image Reconstruction for Hybrid Optoacoustic and Ultrasound Imaging
February 28, 2023

DLBIRHOUI | Deep Learning Based Image Reconstruction for Hybrid Optoacoustic and Ultrasound Imaging

DLBIRHOUI | Deep Learning Based Image Reconstruction for Hybrid Optoacoustic and Ultrasound Imaging

Optoacoustic imaging is a new, real-time feedback and non-invasive imaging tool with increasing application in clinical and pre-clinical settings. The DLBIRHOUI project tackles some of the major challenges in optoacoustic imaging to facilitate faster adoption of this technology for clinical use.

Contact us

Let’s talk Data Science

Do you need our services or expertise?
Contact us for your next Data Science project!