DLBIRHOUI

Deep Learning Based Image Reconstruction for Hybrid Optoacoustic and Ultrasound Imaging

Started
August 1, 2020
Status
In Progress
Share this project

Abstract

Over the last decade, Razansky lab was instrumental in the development of multi-spectral optoacoustic tomography (MSOT), transforming this novel bio-imaging technology from the initial demonstration of technical feasibility, through establishment of image reconstruction methodologies all the way toward its clinical translation. The method rapidly finds its place as a potent clinical imaging tool due to its high sensitivity and molecular specificity as well as non-invasive, real-time and high-resolution volumetric imaging capabilities deep in living biological tissues. Despite great promise demonstrated in the pilot clinical studies, human imaging with MSOT is afflicted by a limited tomographic access to the region of interest while significant constraints are further imposed on the light deposition in deep tissues. This project aims at development of new artificial intelligence capabilities for improving image quality and diagnostic capacity of MSOT images acquired by sub-optimal scanner configurations resulting from e.g. application-related constraints or low cost design considerations. In particular, we will devise machine learning approaches to enable efficient and robust multimodal combination of MSOT with pulse-echo ultrasonography by training neural networks on high-resolution and -quality training datasets generated by dedicated optimally designed scanner configurations. The trained models will be used to restore quality of artifactual images produced by various sub-optimal scanner configurations with limited tomographic view or sparsely acquired data in typical clinical imaging scenarios. Those advancements will help reducing inter-clinician variability and enable a more efficient, rapid, and objective analysis of large amounts of image data, thus relaxing requirements for specialized training and facilitating the wider adoption of MSOT apparatus in primary care and other non-hospital settings.

People

Collaborators

SDSC Team:
Anna Susmelj
Firat Ozdemir

PI | Partners:

Multi-Scale Functional and Molecular Imaging:

  • Prof. Daniel Razansky
  • Berkan Lafci

More info

description

Goals:

  • Devising deep learning approaches to enable accurate reconstruction of 2D and 3D multi-spectral optoacoustic tomography (MSOT) images from artifactual data recorded by sub-optimal imaging systems.
  • Development of accurate automatic segmentation and image improvement approaches for multimodal hybrid optoacoustic ultrasound (OPUS) images.
  • Correcting for the common MSOT image artefacts present in the images acquired under typical handheld clinical imaging scenarios.

Approach:

  • Explore data science approaches for both acquired signal domain and reconstructed image domain paired and unpaired data for reconstruction of accurate scene using limited view input.
  • Explore data science approaches for segmentation of structures of interest (e.g., blood vessels) relying on weak annotations or different image domains (e.g., simulated data).

Impact:

  • MSOT is a considerably new imaging modality among medical imaging approaches. It has many desired properties, such as real-time acquisition and high resolution. Image contrast is achieved through differences of tissue wavelength absorption properties, allowing yet a new insight into non-invasive tissue imaging close to surface with no known side affects on the imaged body (e.g., no ionizing radiation). An initial potential sought for MSOT is detection of cancerous tissue based on oxygen consumption of cystic bodies. Another field of application is assessment of lipid residue within vessels (e.g., carotid artery).

Gallery

Annexe

Additionnal resources

Bibliography

Publications

Related Pages

More projects

ML4FCC

In Progress
Machine Learning for the Future Circular Collider Design
Big Science Data

CLIMIS4AVAL

In Progress
Real-time cleansing of snow and weather data for operational avalanche forecasting
Energy, Climate & Environment

SEMIRAMIS

Completed
AI-augmented architectural design
Energy, Climate & Environment

4D-Brains

In Progress
Extracting activity from large 4D whole-brain image datasets
Biomedical Data Science

News

Latest news

PassGPT | Using language models to enhance password security
February 6, 2024

PassGPT | Using language models to enhance password security

PassGPT | Using language models to enhance password security

PassGPT is a Large Language Model for password generation trained on leaked passwords, which can outperform existing methods based on generative adversarial networks by guessing twice as many unseen passwords.
ADORE | A benchmark dataset in ecotoxicology to foster the adoption of machine learning
January 24, 2024

ADORE | A benchmark dataset in ecotoxicology to foster the adoption of machine learning

ADORE | A benchmark dataset in ecotoxicology to foster the adoption of machine learning

Applying machine learning to ecotoxicology could help reduce the number of animal tests, costs, and animals sacrificed while preserving the accuracy of the in vivo tests.
License Flowers | Art and AI at SDSC
February 21, 2024

License Flowers | Art and AI at SDSC

License Flowers | Art and AI at SDSC

An adventure to create art using AI to raise awareness on code licenses

Contact us

Let’s talk Data Science

Do you need our services or expertise?
Contact us for your next Data Science project!